If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(x^2)+10x+4=0
a = 4; b = 10; c = +4;
Δ = b2-4ac
Δ = 102-4·4·4
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6}{2*4}=\frac{-16}{8} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6}{2*4}=\frac{-4}{8} =-1/2 $
| 34f+0.5=26 | | 175x-125x+38,000=41,000-150x | | 2(x+5)+3(x-7)=265 | | 2x+100x+x^2=180 | | 14+x=−9 | | 3v+17=4v | | z−14=−7.96 | | 16=40-3*p | | q/4+ 10=13 | | x^2+14x=-94 | | -19w-7=-18w | | 5x3x=15 | | 3(1-4x)=-9x=5 | | 8x+14=60 | | 2,4+1.2z-6.5=0.7 | | 3x-(1)=4-1-(x) | | 5x+8+3x-4=2x+58 | | 24.52x+10=24.52x+10 | | 0,4a+9=−6 | | x+49+x+74=105 | | 3x-22=153 | | -(3)/(7)x+3=15 | | -1/8(m-19/6)=1/3m-4/9 | | 6(3x-2)=3(4x-2) | | X=5x+1÷3x-4 | | x=3x^2-18x+29 | | 6n-5(n+3)=27.50 | | 5x-5+7x+3=130 | | x/1200=5/500 | | 62+35+13x+15=180 | | 9g=8g+10 | | (11x+4)+5×=180 |